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9.1 Introduction

One of several approaches that have been proposed
for implementing quantum information process-
ing is to utilize mesoscopic, artificially fabricated,
solid-state structures which,based on the underlying
physics, can be designed to behave as single “quan-
tum particles.” The primary reason for a solid state
approach is that it offers the likelihood of scalabil-
ity by exploiting fabricationstrategies made possible
by the semiconductor industry; scalability is essen-
tial if quantum information processing is to become
a practical reality. Aside from practical applications,
the study of such mesoscopic structures is of interest
in its own right.

Quantum information processing is typically
based on an assembly of quantum bit devices, so-
called qubits [1], a term the community has adopted.
Such devices involve externally controlled transi-
tions between two quantum states, |0〉 and |1〉, corre-
sponding to two different eigenenergies, E0 and E1.
There are now many proposals for qubits involving
various two-level systems. However such elementary
quantum logic devices must satisfy strict require-
ments if they are to be used as quantum logic el-
ements in realistic information processing circuits.
A practical circuit utilizing qubits must permit: (i)
controlled manipulations of the quantum state of
each qubit without disturbing adjacent elements and
(ii) controlled inter-qubitcoupling; also required are
(iii) a limited influence of the external environment
and (iv) sufficiently long dephasing and decoherence
times [2,3]. If these requirements cannot be fulfilled,
reliable qubit circuits cannot be realized, which cur-
rently eliminates many qubit proposals.

Quantum computation (QC) employs and re-
quires a programmable unitary evolution of the indi-
vidual qubits [4]. Because the proposed systems ex-
ploit quantum parallelism and quantum algorithms,
they are capable of efficiently solving certain classes
of problems, which are intractable on classical com-
puters. A striking example is the factorizing of large
numbers [5], which is far more efficient on a quan-
tum computer than on a conventional one.

Along with thedevelopment of the theory of quan-
tum information, there has been a parallel interest in

finding physical systems where quantum computa-
tion can be implemented. Toward this end, one must
first identify a suitable two-level system, which is
sufficiently decoupled from any source of decoher-
ence [6], and for which the coupling among like el-
ements can be controlled, thereby allowing the real-
ization of single- and two-qubit operations. In prin-
ciple one can then carry out any computational task
if requirements (i)–(iv) are fulfilled [2,3,7]

For the implementation of quantum algorithms
various physical systems have been suggested. Some
of these proposals involve: ions in traps, [8] QED
cavities, [9] and NMR-based approaches [10]. To
achieve large-scale integrability and flexibility in the
design, approaches involving micro- or even nano-
technology are being examined including: small-
capacitance Josephson junctions [11–15], coupled
quantum dots [16, 17], neutral atoms in optical
lattices [18], and phosphorus dopants in silicon
crystals1 [19]. Most of the solid-state based ef-
forts concentrate on superconducting qubits, specif-
ically Josephson junction based qubits [3], and we
will review recent junction-based experiments and
their theoretical interpretation. The experimental
evidence for the superposition of charge states in
Josephson junctions [20,21] andrecent achievements
in controlling the coherent evolution of quantum
states in a “Cooper pair box” [22] make supercon-
ducting circuits very promising candidates to imple-
ment solid state quantum computing.

Figure 9.1 shows a schematic representation of
a Josephson junction. Superconducting qubits ex-
ploit Cooper pair tunneling between the superfluid
condensates in adjacent superconducting electrodes.
The Josephson interaction across a dielectric bar-
rier has an intrinsic non-linear origin, which plays
an important role in the design of the qubit devices.
Josephson junction based qubits, depending on the
external configuration, exploit the order-parameter
phase, magnetic flux, or electric charge, as shown
schematically in Fig. 9.2. Combinationsof these con-
figurations are also exploited.

This chapter is organized as follows.In Sect.9.2 we
briefly describe the three Josephson junction based
qubit devices, the phase qubit, the charge qubit, and
the flux qubit, along with experiments on some spe-
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Fig. 9.1. A schematic representation of a Josephson
junction and the equivalent circuit

Fig. 9.2. The three major Josephson-
junction-based qubit implementations

cific implementations. We also discuss so-called hy-
brid qubits that combine aspects of both charge and
flux qubits.

Section 9.3 starts with a review of the quantum
mechanics of two-level systems, which underlies all
qubit operations. This is followed by a discussion of
the effects of decoherence arising from coupling to
external degrees of freedom. It is crucial to maintain
the coherence of the two basic qubit states during
a quantum computation [2]. The decoherence time,
�dec, of the individual qubits should be larger, by a
factor of order 104, than a time top, required to carry
out a single operation; one can then carry our ar-
bitrarily long quantum computations by exploiting
various error-correction techniques. In solid state
implementations, due to the complexity of the en-
vironment, there are many degrees of freedom that
can couple to the qubit states and cause decoherence.
Comparedwith the photonic andatomic qubit strate-
gies, the superconducting persistent current qubit
is subject to more severe decoherence. Dominant
sources of decoherence include both “internal” ef-
fects, such as dissipation, e.g., from quasiparticle re-

sistance, and dephasing from qubit interactions with
the external environment. These mechanisms de-
pend strongly on the geometry, and on fluctuations
of the environment (e.g., nuclear spin fluctuations
in aluminum), on background charge noise, and on
noise in the control currents. It is also possible to
couple to an environmental degree of freedom,with-
out a dissipative mechanism, that will still lead to
decoherence. We will outline the general formalism
that can be used to deal with the dephasing caused
by thermal fluctuations, including quasiparticle dis-
sipation, charge oscillations, nuclear spin relaxation,
etc. However we will not, for the most part, try to
analyze such mechanisms in detail.

Section 9.3 then goes on to discuss some experi-
ments on single qubit operations that have been car-
ried out on phase and charge qubits. The challenge
in performing accurate qubit operations lies in ef-
fectively isolating the two energy levels from the rest
of Hilbert space. In other words, how does one op-
erate as quickly, and with as little error as possible,
on the qubit subspace, while simultaneously isolat-
ing the remaining Hilbert space. This is especially
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important when the coherence time of the system is
short.As an example, a Josephson phase qubit can be
described by three energy levels |0〉, |1〉, and |2〉, with
energies E0, E1, and E2. The qubit space is formed
by |0〉 and |1〉, and hence we wish to operate only
within this subspace. Clearly, the higher-order state
can be avoided when working in the |0〉, |1〉 sub-space
provided the energies differ sufficiently and the ex-
citation pulse is long enough. However, because one
wants to maximize the number of logic operations
within a fixed coherence time, there is a need to mix
the |0〉 and |1〉 states as quickly as possible without
affecting other states.

Operations on charge qubits can be carried out
using the gate voltage alone. However much better
control is achieved using a hybrid qubit where the
charging and Josephson energies can be individually
controlled. Extensive experiments with this device
demonstrating controlled decoupling from the ex-
ternal environment are also described.

Section 9.4 describes a two-qubit gate involving
two capacitively coupled hybrid qubits and some as-
sociatedexperiments.Section 9.5 discusses a recently
proposed and promising two-qubit gate where the
qubit coupling is engineered into a single device and
which is based on a multilayer SISIS junction.

Finally Sect. 9.6 discusses our conclusions where
we examine the outlook for Josephson-junction-
based quantum computing.

Although it is not the focus of this article, we
briefly outline the elementary quantum logic oper-
ations that are necessary for performing quantum
computations in Appendix A.

Errors induced by the gate operations themselves
must be considered if fault-tolerant quantum com-
putation is to be achieved. The most obvious exam-
ple is fluctuations in the control parameters of the
gate,which act as random noise and thus degrade the
unitarity of the time evolution of the computational
degrees of freedom. In addition, the actual gate oper-
ations can change the qubit coupling to the external
environment (even if the coupling is negligible dur-
ing storageperiods) thereby enhancing decoherence.

Most sources of error can be analyzed by properly
modeling the qubit-environment coupling. However,
there are errors, which are not due to (or cannot be

described in terms of) the action of an external en-
vironment. An (intrinsic) source of error in gate op-
erations, [23] which is common to several of the pro-
posedsolid-state implementations, is so-called quan-
tum leakage. It occurs when the computational space
is a subspace of a larger Hilbert space. The effects of
such states have been investigated for ion trap quan-
tum computers where estimates have been obtained
of the number of operations before decay processes
induce dissipative transitions outside the computa-
tional space [8].A procedure for estimating the leak-
age for a phase qubit will be given in Sect. 9.3.2.

Fig. 9.3. Schematic view of a qubit with leakage (according
to [23]). The two low-energy states constitute the compu-
tational Hilbert space. The system, however, evolves under
the action of some unitary operator and can leak out to
the higher excited states. In the case of Josephson junc-
tion qubits, leakage is due to the Josephson tunneling to
higher charge states. In the case of two-qubit operations,
the computational space is spanned by the states |00〉, |01〉,
|10〉, |11〉 and the coupling with the higher charge states is
due both to EJ and to inter-qubit coupling EI. The two low-
energy states constitute the computational Hilbert space.
However the system can leak out to the higher states. If the
energy difference between the low-lying and the excited
states is large compared to the other energy scales of the
system, the probability to leak out is small
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Non-computational states affect the gate dynam-
ics even in the absence of dissipative processes.
Such an analysis applies to the situation illustrated
schematically in Fig. 9.3; the quantum states |0〉 and
|1〉 (with the level splitting ∼ 2Ech, Ech being the
charging energy) are affected by the higher excited
states |n〉 and |n + 1〉, which have the same order of
level splitting∼ Ech due to Josephson tunneling (as-
sociated with an energy EJ ). In two-qubit gates the
states also leak due to the inter-qubitcoupling which
energy is EI.

9.2 Josephson-Junction-Based Qubit Devices

In this section we briefly review some approaches to
realizing Josephson-junction-based qubits. The flex-
ibility of the Josephson-based circuits allows differ-
ent implementations, some of which are now being
developed by various laboratories.

9.2.1 Junction Parameters and Energetics

Figure 9.4 shows, schematically, a Josephson tun-
nel junction together with its equivalent circuit.The
junction is parameterized by a critical current, I0, a
capacitance, C, and a (in general nonlinear) shunt
resistance, R, which here we assume to be large. The
superconducting layers are characterizedby Landau-
Ginzburg order parameters  i = Aiei'i with ampli-
tudes, A1 and A2, and phases '1 and '2 of the respec-
tive superfluid condensates.

The Josephson coupling energy between the lay-
ers depends on the phase difference ' = '1 − '2

Fig. 9.4. Sketch of the SIS tunneling Josephson junction and
its equivalent circuit

Fig. 9.5. Potential energy (in units of maximal Josephson
energy EJ) of a tunnel junction biased by a supercurrent, I

and plays the role of a “potential energy”. We will
show shortly that in the presence of an external bias
supercurrent this potential energy has the form

U
(
'
)

=
¥0

2�

(
I0 sin' − ' I

)
; (9.1)

i.e., it has the shape of a“tilted washboard”, as shown
in Fig. 9.5.Thisenergy profile is exploited in the large
area Josephson junction qubits. Figure 9.6 shows the

Fig. 9.6. The interior of the ellipses shows the
tilting of the“washboard potential”at different
positions on the voltage–current characteristic
of the Josephson junction. The parameters of
the junction (Lukens group, SUNY) are shown
in the inset
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current-voltage characteristic (the I–V curve) of a
voltage biased tunnel junction (the parameters be-
ing indicated in the inset); also shown is the property
that the “washboard” tilt depends on the position on
the I-V curve.

When the junction is embedded in a circuit hav-
ing an external inductance Ls , the behavior depends
on its size relative to a characteristic inductance
LJ ≡ ¥0/2�I0 (where ¥0 = h/2e is the flux quan-
tum). One then has two limiting cases: Ls � LJ , in
which the induced flux in the loop is unimportant,
and Ls � LJ where it plays a key role. Circuits of
the first type (Ls � LJ ) are usually based on alu-
minum junctions while circuits of the second type
(for which Ls � LJ ) are usually based on niobium.
When Ls � LJ the properties are determined by the
relation between the maximum Josephson coupling
energy, EJ = I0¥0/2� , and the elementary Coulomb
energy, e2/2C.

9.2.2 The Basic Josephson Qubit Categories

We now briefly review some Josephson-junction-
based qubits. The flexibility of the Josephson-based
circuits allows different implementations, some of
which are now being developed by various laborato-
ries.Depending on the variablemanipulated, and the
junction energetics, we identify the following qubit
categories: (i) the phase qubit with EJ � Ec (by a fac-
tor 103), where the current density j is the variable;
(ii) the charge qubit with EJ < Ec , where the charge
Q is the variable; and (iii) the flux qubit with EJ � Ec

(by a factor 102–103), where the magnetic flux ¥ is
the variable. We now give a brief description of each
of these three cases.

9.2.3 Phase Qubits

The total current across the junction in Fig. 9.4b is
given by

I = V/R + I0 sin' + CV̇ . (9.2)

Using the Josephson relation, V = (�/2e)'̇ , and as-
suming the current I is constant, which allows us to
write I = @� (I' )/@' , we can rewrite Eq. (9.2) as

C
(
¥0

2�

)2

'̈ +
1

R

(
¥0

2�

)2

'̇

+
@

@'

[
−I0

¥0

2�
cos' − I

¥0

2�
'

]
= 0 ,

(9.3)

where ¥0 = h/2e is the superconducting flux quan-
tum.The first term in Eq. (9.3) can beassociated with
a “kinetic energy” K which takes the various forms

K =
Q2

2C
=

1
2

CV 2 =
(
¥0

2�

)2

'̇ 2 . (9.4)

The potential energy of the junction itself is given by

U =
∫

IJVdt =
I0¥0

2�

∫
sin'

d'
dt

dt

= −
I0¥0

2�
cos' ;

(9.5)

from this expression it follows that we can interpret
Eqs. (9.2) and (9.3) in terms of the motion of a clas-
sical particle in a “tilted washboard” potential of the
form

Ũ = −I0
¥0

2�
cos' − I

¥0

2�
' ; (9.6)

this system is shown in Fig. 9.7. Neglecting damping
(R → ∞), the potential energies given by Eqs. (9.5)
and (9.6) together with the above kinetic energy,
K = q2/2C, yield the Hamiltonian under which the
classical system evolves in time

H(q,' ) = K + Ũ

=
Q2

2C
−

I0¥0

2�
cos' −

I¥0

2�
' , (9.7)

where the charge q plays the role of a momentum, C
is a mass, and ' is a coordinate.

We now make the transition to quantum mechan-
ics by writing

Ĥ =
1

2C
Q̂2 −

I0¥0

2�
cos' −

I¥0

2�
' , (9.8)

where Q̂ = (2e/i)@/@' and we have the commuta-

tion relation
[
Q̂,'

]
= 2ei. Quantum mechanical be-

havior can be observed for large area junctions for
which I0¥0/2� = EJ � EC = e2/2C and when the
bias current I is somewhat smaller than the crit-
ical current I0. In this regime the potential Ũ(' )
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Fig. 9.7. The motion of a classical particle in a“tilted wash-
board” potential. When the tilt is small (the lower profile),
the particle oscillates inside the local “washboard” min-
imum. However at steeper inclines, the particle escapes
to an adjacent minimum or, if the damping is small, rolls
steadily down the“washboard”(corresponding to as finite
voltage state)

can be expanded (about the displaced minimum re-
sulting from the constant current I) and accurately
approximated by a cubic polynomial involving a

barrier height �U (I) =
(
2
√

2I0¥0/3�
)

[1 − I/I0]3/2

and a quadratic curvature at the bottom of the
well that gives a classical oscillation frequency
!p (I) = 21/4 (2�I0/¥0C)1/2 [1 − I/I0]

1/4. The com-
mutation relation leads to quantized energy levels in
this cubic potential, which are shown schematically
in Fig. 9.8.

When operating the junction as a qubit, one ad-
justs the tilt to achieve two states lying deeper in the
potential well with a third level positioned near the

Fig. 9.8. Some quantized states in the quantum well created
by the Josephson energy profile

top. The escape rates, �n and �n+1, from levels n and
n+1 to an adjacent well differ significantly from each
other; a typical ratio is, �n/�n+1 ∼ 102.

Microwave bias currents induce transitions be-
tween levels at a frequency !mn = Emn/� =
(Em − En) /�, where En is the energy of state |n〉. In
the cubic approximation the two lowest transitions
have the frequencies [24]

!10 ≈ !p

(
1 −

5
36

�!p

�U

)
(9.9)

and

!21 ≈ !p

(
1 −

10

36

�!p

�U

)
. (9.10)

These two frequencies must differ if we are to ac-
cess the two-state system in a controllable way. The
ratio �U/�!p parameterizes the anharmonicity of
the cubic potential with regard to the qubit states,
and gives an estimate of the number of states in the
well. The result of the quantization is to create states
inside a local minimum of the washboard, as shown
in Fig. 9.8. (Due to tunneling these states are more
correctly viewed as resonances with widths �n .) The
dependence of!10,!21, and!32 on the anharmonic-
ity ratio,�U/�!p, is given in Fig. 9.9.

The challenge in performing accurate qubit op-
erations lies in successfully isolating the two lowest
energy levels from the rest of the state space; clearly

Fig. 9.9. The dependence of the transition frequencies !10,
!21 and !32 between levels on the anharmonicity ratio
�U/�!p
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onewants to operatequickly in thequbit subspace (to
minimize the effects of decoherence, see Sect. 9.3.2)
with as little coupling to unintended states as possi-
ble. This is especially important when the coherence
times of the system are short.

A Josephson phasequbit involves three energy lev-
els |0〉, |1〉, and |2〉, with energies E0, E1, and E2. The
qubit space is formed by |0〉 and |1〉, while the third
level is used as a readout (by exploiting its high tun-
neling rate). The |0〉 ↔ |2〉 transition can be mini-
mized by exciting the |0〉 ↔ |1〉 transition (having a
frequency !10) with a sufficiently long pulse. How-
ever, because one wants to maximize the number of
logic operations within a fixed coherence time, there
is a need to excite the |0〉 ↔ |1〉 transition as quickly
as possible without populating other states.

The state of the qubit is determined by a combina-
tion of a dc bias current, Idc, and a time-varying mi-
crowave bias current, I
w(t), at a frequency ! = !10

I (t) = Idc + �I (t) = Idc − I
w (t) cos (!t + �) .
(9.11)

9.2.4 Charge Qubits

The Single Junction Charge Qubit

We now consider the case EC>EJ (by a few orders
of magnitude); this leads us to a different class of
devices, the so-called charge qubits. The simplest ex-
ample of such a device is shown schematically in
Fig. 9.10. It involves two superconducting strips, S1

and S2 one of which slightly overlaps the other, but
which are separated by an oxide barrier so as to form
a Josephson junction; this junction is characterized
by a capacitance CJ and critical current I0 where
the latter is associated with a Josephson energy, EJ .
One of these strips (designated S2 in the figure) is
called the island or Cooper charge box; it has a self-
capacitance CI and it is coupled to an adjacent third
strip, called the gate, through a capacitance CG to
which a voltage VG is applied. It is assumed that there
is no Josephson coupling between the gate and the is-
land and that the gate can be biased relative to the
island by a voltage VG. A typical island capacitance,
CI , is≤ 10−15F, while the gate capacitance is typically
smaller.

Fig. 9.10. The basic circuit of a single junction charge qubit

It is assumed the device is configured such that
the superconducting energy gap, �, is the largest
energy in the system and hence at low tempera-
tures (� � kBT) quasiparticle tunneling can be ne-
glected. Under this circumstance coherent tunnel-
ing of Cooper pairs is the only channel between the
island and the superconducting electrode and the
charge of the island is restricted to 2Ne where N , the
number of excess Cooper pairs, is an integer.

The electrostatic energy associated with devices
of this type is somewhat subtle. We will not discuss
this problem here but rather refer the reader to an
analysis by Tinkham who obtains the form [25]

ECoulomb = 4EC (N − NG)2 + const., (9.12)

where the constant can be ignored, EC ≡ e2/2CI is
the single electron charging energy of the island, and
NG is the number of Cooper pairs induced electro-
statically by the gate on the island; NG can be writ-
ten in terms of the gate voltage as NG = CGVG/2e.
When there are no excess Cooper pairs on the island
(N = 0) the energy increases quadratically with the
gate voltage, as with any capacitor; this behavior is
shown by the black parabola in Fig. 9.11. The en-
ergy in the presence of a single excess Cooper pair
on the island is shown by the red parabola. Note
ECoulomb vanishes for NG = 1 or, equivalently, at a
gate voltage VG = 2e/CG. On the other hand, at the
point NG = 1/2, where the red and black parabo-
las in Fig. 9.11 cross each other, two many-body su-
perconducting ground states of the island would be
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Fig. 9.11. The energy diagram of a
charge qubit

degenerate in the absence of the Josephson coupling
(which we have been assuming small compared with
the Coulomb energy); i.e. the states with that N = 0
and N = 1 would have the same energy. Hence VG

can be used as a control parameter to perform quan-
tum superpositions of these many-body supercon-
ducting charge states.1

As with the phase qubit discussed above, the dy-
namics of the device are again governed by a clas-
sical Hamiltonian that is the sum of an electrostatic
kinetic energy,given by Eq. (9.12), and the Josephson
potential energy. To transition to quantum mechan-
ics, in a representation where the Josephson phase
is diagonal, the electrostatic energy is interpreted as
a kinetic energy operator, K = 4EC(N̂ − NG)2; here
N̂ = −i@/@' is the Cooper pair number operator,
which is conjugate to the phase variable,' , of the su-
perconducting order parameter of the island. From
Eq (9.6) (with I = 0), the potential energy is writ-
ten U = EJ cos' , where we again defined a Joseph-
son coupling energy, EJ=I0¥0/2� . The Hamiltonian
of the system is then

H = K + U = 4EC(N̂ − NG)2 + EJ cos' ; (9.13)

this Hamiltonian is quantized via the commutation

relation
[
N̂,'

]
= i.

The Double Junction Charge Qubit

The single junction device described above has the
disadvantage that the only parameter that can con-
veniently be tuned is the gate voltage. We will show
in Sect. 9.3.3 that, in spite of this limitation, it is
still possible to perform arbitrary single qubit op-
erations; however the procedures required turn out
to be somewhat awkward and for this reason it is de-
sirable to have a second, independent, parameter. As
shown schematically in Fig. 9.12, this can be accom-
plished if we couple the island to a second Joseph-
son junction that is connected to the first junction
by a superconducting link such that a closed loop is
formed; it is now assumed that a flux ¥x is induced
in this loop (by a second loop driven by an external
current) such that a supercurrent passes through the
two junctions (in addition to the island); this alters
the Josephson critical current and with it the Joseph-
son coupling energy and provides an independently

1 Since the charging energy depends on the square of the gate potential, it is periodic in the Cooper pair number, and
undergoes a splitting where NG = (2N + 1)/2, the E vs.NG curves have the appearance of the E vs.k curves encountered
in the theory of nearly free electrons in a one-dimensional crystal. In particular the point NG = 1/2 corresponds to an
electron at the first Brillouin zone point.
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Fig. 9.12. A double junction qubit biased by a flux trans-
former

adjustable parameter. The device is variously called
a hybrid device or Bloch transistor.

Assuming identical junctions one obtains the
Hamiltonian as

Ĥ = EC

(
N̂ − NG

)2
+ EJ (cos'1 + cos'2)

= EC

(
N̂ − NG

)2
+ 2EJ cos'x cos' ;

(9.14)

here 'x = '1 + '2 = �¥x/¥0 and arises from the in-
duced d.c. current flowing through the two junctions
while' = '1−'2 where'1 and'2 are thephase shifts
across the first and second junction respectively. The
second term now acts as an effective Josephson cou-
pling energy the strength of which can be tuned
through the current I . Writing 2Eeff

J = 2EJ cos (�/2)
our Hamiltonian becomes

Ĥ = EC

(
N̂ − NG

)2
+ 2Eeff

J cos' (9.15)

with
NG = NG(VG)

and
Eeff

J = Eeff
J (¥x) .

Fig. 9.13. Single-Cooper-pair box with a probe junction. Left: Circuit diagram of the device. The C’s represent the capaci-
tance of each element and theV’s are voltages that can be applied to each electrode. Right: Micrograph of the sample; light
areas are electrodes.The electrodes were fabricated by electron-beam lithography and shadow evaporation ofAl on a SiNx

insulating layer (400 nm thick) above a gold ground plane (100 nm thick) on the oxidized Si substrate.The“box”electrode
is a 700×50×15 nm Al strip containing∼ 108 conduction electrons.The reservoir electrode was evaporated after a slight
oxidation of the surface of the box so that the overlapping area becomes two parallel low-resistance junctions (∼ 10 k§
in total) with Josephson energy EJ which can be tuned by a magnetic flux ¥ penetrating through the loop. Before the
evaporation of the probe electrode the box is further oxidized to create a highly resistive probe junction (Rb < 30 M§).
Two gate electrodes (d.c. and pulse) are capacitively coupled to the box electrode. The sample was placed in a shielded
copper case at the base temperature (T < 30 mK; kBT < 3 ‹eV) of a dilution refrigerator. The single-electron charging
energy of the box electrode EC = e2/2CI was 117 ± 3 meV, where CI is the total capacitance of the box electrode. The
superconducting gap energy � was 230± 10 ‹eV
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The Double Junction Charge Qubit
with a Readout Junction

By including a third or“probe” junction, readout can
be facilitated [26]. Such a device is shown in Fig. 9.13.
The right side is an electron micrograph of the device
itself while the left side shows a schematic diagram.
As with the simplified double junction device, it in-
volves a small superconducting island on which N
excess Cooper-pairs (relative to some neutral refer-
ence state) can reside.The island is again electrostat-
ically coupled through a capacitance CG to a control
gate G, that biases the charge on the island; how-
ever an additional capacitance, Cp, is also included
to allow control pulses to be inserted. As noted, the
inclusion of a third junction allows read out; this

is accomplished by biasing the device far from the
degeneracy point causing the superposition state to
collapse.

Figure 9.14 shows a similar device that the orig-
inal authors [27] refer to as a quantronium circuit.
Activating the bias current Ib, drives the qubit away
from its optimal working point and is again used to
readout the quantum state.The circuit was fabricated
by depositing aluminum through a suspended mask
that was in turn patterned by e-beam lithography.
It consists of a superconducting loop interrupted by
two small Josephson tunnel junctions, each with ca-
pacitance CJ (having a low series capacitance) and
Josephson energy EJ , a superconducting island with
capacitance CI , and by a large Josephson junction EJ0

with energy EJ0
∼= 20EJ . The island is again charge-

Fig. 9.14. Top: scanning electron micrograph of the cir-
cuit. Bottom: schematic diagram showing the tuning,
preparation and readout blocks
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biased by a voltage source VG through a gate capac-
itance CG; it is flux-biased by a loop that generates
clockwiseor counter-clock wise currents through the
junctions.

Experimental studies have been performed by
several groups with aluminum tunnel junctionswith
dimensions below 100 nm [4,28]. The superposition
of charge states in circuits in the charging regime
has been demonstrated [29–31] and is in quantita-
tive agreement with theory [32,33]. The Heisenberg
uncertainty principle has been demonstrated when
EJ ≈ EC . [34] When EJ > EC topological excitations
involving vortices exist (which we do not discuss)
and quantummechanical interference of these quan-
tities has been observed [34]. Unfortunately circuits
of the first type in the charging regime are sensi-
tive to fluctuating “off-set charges” that are present
in the substrate [35,36].These random offset charges
make the design of a controllable array of quantum
circuits difficult and introduce a strong source of de-
coherence.

The Charge-State Basis

In a bulk superconductor one usually characterizes
the macroscopic quantum state by the Ginzburg-
Landau phase and regards the Cooper pair number
as a fluctuating quantity. However when the island
charging energy significantly exceeds the Josephson
coupling energy,Ec � EJ , states |N〉numberedby the
excess number of Cooper pairs N on the island form
a good basis. In this basis the Hamiltonian (9.13) is
written

Ĥ =
∑

N

{
4EC

(
N̂ − NG

)2 |N〉 〈N | (9.16)

−
1

2
EJ [|N〉 〈N + 1| + |N + 1〉 〈N |]

}
.

When N differs significantly from NG the energy lev-
els are dominated by the charging part of the Hamil-
tonian. However, when NG is approximately a half-
integer, the charging energies of two adjacent states
that differ by a Cooper pair are close to each other
(e.g., at VG=Vdeg ≡ e/CG), and the Josephson tunnel-
ing strongly mixes them (see Fig. 9.11). If we focus

on voltages near such a degeneracy point, only two
charge states (say N = 0 and N = 1) play a role; all
other charge states have a much higher energy and
can be ignored. In this case the Cooper box Hamilto-
nian (9.16) reduces to a two-state quantum system (a
qubit) with a Hamiltonian that in spin-1/2 notation
can be written as

Ĥ = −
1
2

Bz�̂z −
1
2

Bx�̂x . (9.17)

The charge states N = 0 and N = 1 associated with
the diagonal operator �̂z are given by

|↑〉 =
(

1
0

)
; |↓〉 =

(
0
1

)
(9.18)

respectively and the effective magnetic field Bz cor-
responds to the charging energy, which is controlled
by the gate voltage and is given by

Bz = ıEch ≡ 4Ec (1 − 2NG) . (9.19)

On the other hand, Bx ≡ EJ , associated with the off
diagonal operator �̂x, couples states differing by one
Cooper pair.

We now rewrite the Hamiltonian (9.17) as

Ĥ = −�E (�)
(
cos��̂z + sin ��̂x

)
/2 , (9.20)

where the mixing angle

� ≡ tan−1 (Bx/Bz) (9.21)

determines the direction of the effective magnetic
field in the x–z plane. The eigenvalues of (9.20) are
given by

�E (�) =
√

B2
x + B2

z = EJ/ sin � (9.22)

and the eigenstates, |0〉 and |1〉, by

|0〉 = cos
�

2
|↑〉 + sin

�

2
|↓〉 , (9.23a)

|1〉 = − sin
�

2
|↑〉 + cos

�

2
|↓〉 . (9.23b)

The point where the two charge states are degener-
ate corresponds to Bz = 0, or equivalently � = �/2;
here �E = EJ . We can now rewrite the Hamiltonian
in diagonal form as

Ĥ = −
1
2
�E (�) �̂z , (9.24)
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where we have introduce a second set of Pauli matri-
ces, �̂, that operate in the |0〉, |1〉 basis,while retaining
the �̂ operators for the charge-state basis, |↑〉, |↓〉.

The Hamiltonian (9.24) is similar to the ideal
single-qubit model. Ideally the bias energy (the ef-
fective magnetic field in the z direction) and the tun-
neling amplitude (the field in the x direction) are
controllable, a property of the hybrid devices dis-
cussed above. As noted above, it turns out that we
can perform all qubit operations using only a single
parameter, thebias energy (through thegate voltage);
this situation will be considered in Sect. 9.3.3. Oper-
ations that include tuning the tunneling amplitude,
which fixes the Josephson energy, will be considered
in Sect. 9.3.3.

9.2.5 Flux Qubits

In circuits of the second type identified in Sect. 9.2.1
(Ls � LJ ), the quantum variables can be related to
the flux in the loops and their time derivatives.

The circuits involve a superconducting ring that
is interrupted by one or more Josephson junctions in
which a persistent current flows with its associated
magnetic flux. The flux-based qubits emerge from
the following ideas. We recall that flux is quantized
within a superconducting loop; i.e.,

If we now insert a Josephson junction in the loop (see
Fig.9.15) thephasedifference across the junction will
be related to the flux¥ within the loop,which in units
of the flux quantum,¥0=h/2e, is written

¥ = ¥0

(
n −

'

2�

)
, (9.25)

where n is an integer number and ' = 2�(¥ /¥0).
When the system is biased by an externally applied
flux ¥x, the Hamiltonian (which includes the Joseph-
son, charging, and magnetic contributions to the en-
ergy) is written as

H = EC + EJ +
1
2

LI2 , (9.26)

where

EC =
Q2

2CJ
; EJ = −EJ

0 cos
(

2�
¥

¥0

)
;

1

2
LI2 =

(¥ − ¥x)2

2L
;

(9.27)

here L is the self-inductance of the loop and CJ is
the capacitance of the junction. In quantizing (9.26)
we interpret the charge as an operator Q = −i�@/@¥
that is canonically conjugate to the flux ¥ .

If the self-inductance is large, such that the pa-
rameter ˇL = EJ

0/
(
¥ 2

0 /4�2L
)

is larger than 1,and the
externally applied flux ¥x is close to¥0/2, the second
and third terms in the Hamiltonian (9.26),

U = U0

[
1

2

(
' − 'x

)2
− ˇL cos

(
'
)
]

, (9.28)

form a double-well potential (see Fig. 9.16); here
' = 2�¥ /¥0,'x ≡ 2�(¥x/¥0),and U0 = ¥ 2

0 /(4�2L).
At low temperatures only the lowest states in the two
wells contribute.

Fig. 9.15. A Josephson junction shunted by an external in-
ductor

Fig. 9.16. A typical two-level system
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Analogous to Eq. (9.17) for the charge qubit, the
reduced Hamiltonian of this effective two-state sys-
tem can again be written in the form

Ĥ = −Bz�̂z/2 − Bx �̂x/2 .

The diagonal term Bz plays the role of a bias; when
ˇL − 1 � 1 we can expand the cosine and the asym-
metry of the double-well potential can then be rep-
resented by a field

Bz
(
'x
)

= 4�
√

6
(
ˇL − 1

)
EJ
(
'x − 1/2

)
. (9.29)

Bz can be tuned through theappliedflux¥x via an ap-
plied current Ix. The off-diagonal term Bx describes
the tunneling amplitude between the wells,which de-
pends on the height of the barrier and thus on the
Josephson energy EJ ; this energy can be controlled if
the junction is replaced by a dc SQUID with the flux
¥̃x introduced as another control variable [8]. With
these two external control parameters the elemen-
tary single-bit operations, i.e., z and x rotations, can
be performed, which are equivalent to the manipu-
lations described in the previous section for charge
qubits.

Flux qubit operations can be performed either by
abrupt switching of the external fluxes ¥x and ¥̃x for
a finite time, or with the use of r.f. fields and reso-
nant pulses. Such a devices constitutes the r.f. SQUID
used in the experiments [37–40]. To permit coher-
ent manipulations, the parameter ˇL in Eq. (9.29)
should be chosen larger than unity (so that two min-
ima with well-defined levels appear),but not so large
that the resulting barrier height between the minima,
�U ,overly suppresses the tunneling; these energetics
are shown in Fig. 9.16.

The r.f. SQUID described above, which mimics
an asymmetric quantum well (shown in Fig. 9.17),
was discussed in the mid 1980’s as a realization
of a two-state quantum system. Some features of
macroscopic quantum behavior were demonstrated,
such as macroscopic quantum tunneling of the flux,
resonant tunneling, and level quantization [41–44].
However, only very recently has the level repulsion
near a degeneracy point been demonstrated [45,46].
For the r.f. SQUID, thermal activation of macro-
scopic quantum states [47] has been observed as well

Fig. 9.17. The asymmetric quantum well; biasing is
achieved by a flux ¥x . The level structure is probed using
macroscopic resonant tunneling

Fig. 9.18. The SQUID level splitting versus the magnetic
flux ¥x in the double-well potential U . The two states have
circulating currents of opposite sign

as macroscopic quantum tunneling between states
shown schematically in Fig. 9.18 [48].

Caldeira and Leggett [49] proposed these sys-
tems in the mid 1980s as test objects to study var-
ious quantum-mechanical effects, including macro-
scopic quantum tunneling of the phase (or flux) as
well as resonant tunneling. Both the effects have
been observed in several experiments [50–53]. An
advantage of such devices is that the two persis-
tent current states can be externally distinguished,
since they involve circulating currents of opposite
sign (see Fig. 9.18). This leads to alternative qubit
design that exploits circuits of the first type (with
aluminum), but which utilizes states associated with
circulating currents having opposite sign (as in cir-
cuits of the second type). These circulating current
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Fig. 9.19. The energy level positions versus the tilt of the
double well potential in a SQUID-type device.The avoided
level crossing is indicated by the dashed line

states typically create a magnetic flux ∼ 10−3¥0 so-
called “persistent current (PC) states”. These states
obey all of the five requirements for a quantum bit:
(1) they can readily be prepared in the ground state
(at a sufficiently low temperature); (2) they can be
precisely manipulated with magnetic fields; (3) two
qubits can be coupled inductively, and that coupling
can be switched on and off; (4) the flux associated
with the PC states can be measured using a SQUID-
type detector; and (5), the states can be made insen-
sitive to background charges and effectively decou-
pled from their electrostatic environment (in con-
trast with charge quantum states in Josephson cir-
cuits); the magnetic coupling to the environment can
also be effectively suppressed.

Another important quantum effect has been re-
ported recently: The groups at Stony Brook [54] and
Delft [55] have experimentally observed the avoided
level crossing due to coherent tunneling of the flux
in a double-well potential. In principle, all other ma-
nipulations discussed in the previous section should
be possible with Josephson flux devices as well. The
group at Stony Brook probed, spectroscopically, the
superposition of excited states in different wells. The
experimental results are shown in Fig. 9.19 for an
r.f. SQUID with a self-inductance L = 240 pH and
ˇL = 2.33. In the experiment a substantial separation
of the minima of the double-well potential (of order
¥0) and a high inter-well barrier made the tunnel
coupling between the lowest states in the wells neg-

ligible. However, both wells contain a set of higher
localized levels (under suitable conditions one state
in each well) with relative energies that are also con-
trolled by ¥x and ¥̃x. Because they were closer to the
top of the barrier, these states mixed more strongly
and formed eigenstates, which were superpositions
of localized flux states from different wells. External
microwave radiation was then used to pump the sys-
tem from a well-localized lowest state in one well
to one of these eigenstates. The energy spectrum
of these levels was studied for different biases ¥x,
¥̃x, and the properties of the model associated with
Eq. (9.28) were confirmed. In particular, the level
splitting at the degeneracy point indicated a super-
position of distinct quantum states. They differed in
a macroscopic way: the authors estimated that the
parameters associated with the two superimposed
flux states differed by a flux ¥0/4, a current of 2–3
mA, and a magnetic moment of 1010
B.

9.3 Qubit Dynamics

In this section we begin by discussing the manipula-
tion of single qubit devices by an external time de-
pendent field. In realistic mesoscopic systems, there
are usually several discrete energy levels (e.g. the
three levels utilized in a phase qubit). However a
qubit utilizes only two of these levels and therefore
care must be taken to isolate these levels from the re-
maining levels.Assuming for the moment that this is
the case, we first review the quantum mechanics as-
sociated with transitions within a two-level system,
which is fundamental to the operation of all qubits.

9.3.1 Transitions Within Two-Level Systems;
the Rabi Frequency

Assume we are given a system with discrete levels
En and states ¥ (q, t) (where q denotes all spatial
coordinates) that is perturbed by an external time-
dependent field, V̂(t). We seek an approximate solu-
tion to the time-dependent Schrödinger equation,

i�
@¦

@t
=
(
Ĥ0 + V̂(t)

)
¦ , (9.30)




